Prediction of skin penetration using artificial neural network (ANN) modeling.
نویسندگان
چکیده
Artificial neural network (ANN) analysis was used to predict the skin permeability of selected xenobiotics. Permeability coefficients (log k(p)) were obtained from various literature sources. A previously reported equation, which was shown to be useful in the prediction of skin permeability, uses the partial charges of the penetrants, their molecular weight, and their calculated octanol water partition coefficient (log K(oct)). The equation was used to predict the skin permeability for the set of 40 compounds (r(2) = 0.672). A successful ANN was developed and the ANN produced log k(p) values that correlated well with the experimental ones(r(2) = 0.997). The penetration properties of a selection of compounds through human skin that have not been previously investigated, etodolac, famotidine, nimesulide, nizatidine, ranitidine, were investigated. Their permeability coefficients were determined. It was then possible to compare the experimental data with that predicted using the partial charge equation and the trained ANN. ANN modeling for predicting skin permeability was found to be useful for predicting skin permeability coefficients of compounds. In conclusion, the developed and described ANN model in this publication does not require any experimental parameters; it could potentially provide useful and precise prediction of skin penetration for new drugs or toxic penetrants.
منابع مشابه
Comparison between artificial neural network and radiobiological modeling for prediction of thyroid gland complications of after radiotherapy
Introduction: Hypothyroidism is one of the frequent side effects of radiotherapy of head and neck cancers, breast cancer, and Hodgkin's lymphoma. It is recommended to estimate the normal tissue complication probability of thyroid gland using radiobiological modeling during treatment planning. Moreover, the use of artificial neural network is also proposed as a new method for t...
متن کاملApplication of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction
This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...
متن کاملPrediction of Egg Production Using Artificial Neural Network
Artificial neural networks (ANN) have shown to be a powerful tool for system modeling in a wide range of applications. The focus of this study is on neural network applications to data analysis in egg production. An ANN model with two hidden layers, trained with a back propagation algorithm, successfully learned the relationship between the input (age of hen) and output (egg production) variabl...
متن کاملPrediction of Mechanical Properties of TWIP Steels using Artificial Neural Network Modeling
In recent years, great attention has been paid to the development of high manganese austenitic TWIP steels exhibiting high tensile strength and exceptional total elongation. Due to low stacking fault energy (SFE), cross slip becomes more difficult in these steels and mechanical twinning is then the favored deformation mode besides dislocation gliding. Chemical composition along with processing ...
متن کاملModeling of weld penetration in SAW process in the presence of boehmite nano-particles surface adsorbed by boric acid using MLP-ANN
This paper investigates the effect of boehmite nano-particles surface adsorbed byboric acid (BNBA) along with other input welding parameters such as welding current, arc voltage, welding speed, nozzle-to-plate distance on weld penetration. Weld penetration modeling was carried out using multi-layer perceptron artificial neural network (MPANN) technique. For the sake of training the network, 70%...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of pharmaceutical sciences
دوره 92 3 شماره
صفحات -
تاریخ انتشار 2003